1. Installation
First clone the SiD pipelines repository from Hugging Face, then install the required Python packages:
# clone the SiD pipelines repo
git clone https://huggingface.co/YGu1998/SiD_pipelines
# go into the repo
cd SiD_pipelines
# install dependencies
pip install -r requirements.txt
cd ..
2.1. Inference with SiD-DiT SANA Rectified Flow
import torch
from SiD_pipelines import SiDSanaPipeline
prompt = ["a studio portrait of an elderly woman smiling, soft window light, 85mm lens"]
model_repo_id = "YGu1998/SiD-Flow-Sana-0.6B-512-res"
pipe = SiDSanaPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
generator = torch.Generator().manual_seed(42)
time_scale = 1000 # for SANA Rectified Flow, 1000 for SANA TrigFlow
num_inference_steps=4
resolution = 512
image = pipe(
prompt=prompt,
guidance_scale=1,
num_inference_steps=num_inference_steps,
width=resolution,
height=resolution,
generator=generator,
time_scale=time_scale,
).images[0]
2.2. Inference with SiD-DiT SANA Trig Flow
import torch
from SiD_pipelines import SiDSanaPipeline
prompt = ["a studio portrait of an elderly woman smiling, soft window light, 85mm lens"]
model_repo_id = "YGu1998/SiD-Flow-Sana-Sprint-0.6B-1024-res"
pipe = SiDSanaPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
generator = torch.Generator().manual_seed(42)
time_scale = 1
num_inference_steps=4
resolution = 1024
image = pipe(
prompt=prompt,
guidance_scale=1,
num_inference_steps=num_inference_steps,
width=resolution,
height=resolution,
generator=generator,
time_scale=time_scale,
).images[0]
3. Inference with SiD-DiT SD3/SD3.5
import torch
from SiD_pipelines import SiDSD3Pipeline
prompt = ["a studio portrait of an elderly woman smiling, soft window light, 85mm lens"]
model_repo_id = "YGu1998/SiD-Flow-SD3.5-medium"
pipe = SiDSD3Pipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
generator = torch.Generator().manual_seed(42)
time_scale = 1000 # for SANA Rectified Flow, 1000 for SANA TrigFlow
num_inference_steps=4
resolution = 1024
image = pipe(
prompt=prompt,
guidance_scale=1,
num_inference_steps=num_inference_steps,
width=resolution,
height=resolution,
generator=generator,
time_scale=time_scale,
).images[0]
4. Inference with SiD-DiT Flux
import torch
from SiD_pipelines import SiDFluxPipeline
prompt = ["a studio portrait of an elderly woman smiling, soft window light, 85mm lens"]
model_repo_id = "YGu1998/SiD-Flow-Flux-512-res"
pipe = SiDFluxPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
generator = torch.Generator().manual_seed(42)
time_scale = 1000 # for SANA Rectified Flow, 1000 for SANA TrigFlow
num_inference_steps=4
resolution = 512
image = pipe(
prompt=prompt,
guidance_scale=1,
num_inference_steps=num_inference_steps,
width=resolution,
height=resolution,
generator=generator,
time_scale=time_scale,
).images[0]